
https://www.newyorker.com/science/elements/how-the-artificial-intelligence-program-alphazero-

mastered-its-games

The New Yorker

How the Artificial-Intelligence Program AlphaZero Mastered Its Games
By James Somers

December 28, 2018

In 2016, a Google program soundly defeated Lee Sedol, the world’s best Go player, in a
match viewed by more than a hundred million people.

Photograph by Ahn Young-joon / AP

Afew weeks ago, a group of researchers from Google’s artificial-intelligence subsidiary,
DeepMind, published a paper in the journal Science that described an A.I. for playing games.
While their system is general-purpose enough to work for many two-person games, the
researchers had adapted it specifically for Go, chess, and shogi (“Japanese chess”); it was given
no knowledge beyond the rules of each game. At first it made random moves. Then it started
learning through self-play. Over the course of nine hours, the chess version of the program
played forty-four million games against itself on a massive cluster of specialized Google
hardware. After two hours, it began performing better than human players; after four, it was
beating the best chess engine in the world.

The program, called AlphaZero, descends from AlphaGo, an A.I. that became known for
defeating Lee Sedol, the world’s best Go player, in March of 2016. Sedol’s defeat was a stunning
upset. In “AlphaGo,” a documentary released earlier this year on Netflix, the filmmakers follow

https://www.newyorker.com/science/elements/how-the-artificial-intelligence-program-alphazero-mastered-its-games
https://www.newyorker.com/science/elements/how-the-artificial-intelligence-program-alphazero-mastered-its-games
https://www.newyorker.com/contributors/james-somers
http://science.sciencemag.org/content/362/6419/1140

both the team that developed the A.I. and its human opponents, who have devoted their lives
to the game. We watch as these humans experience the stages of a new kind of grief. At first,
they don’t see how they can lose to a machine: “I believe that human intuition is still too
advanced for A.I. to have caught up,” Sedol says, the day before his five-game match with
AlphaGo. Then, when the machine starts winning, a kind of panic sets in. In one particularly
poignant moment, Sedol, under pressure after having lost his first game, gets up from the table
and, leaving his clock running, walks outside for a cigarette. He looks out over the rooftops of
Seoul. (On the Internet, more than fifty million people were watching the match.) Meanwhile,
the A.I., unaware that its opponent has gone anywhere, plays a move that commentators called
creative, surprising, and beautiful. In the end, Sedol lost, 1-4. Before there could be acceptance,
there was depression. “I want to apologize for being so powerless,” he said in a press
conference. Eventually, Sedol, along with the rest of the Go community, came to appreciate the
machine. “I think this will bring a new paradigm to Go,” he said. Fan Hui, the European
champion, agreed. “Maybe it can show humans something we’ve never discovered. Maybe it’s
beautiful.”

AlphaGo was a triumph for its creators, but still unsatisfying, because it depended so much on
human Go expertise. The A.I. learned which moves it should make, in part, by trying to mimic
world-class players. It also used a set of hand-coded heuristics to avoid the worst blunders
when looking ahead in games. To the researchers building AlphaGo, this knowledge felt like a
crutch. They set out to build a new version of the A.I. that learned on its own, as a “tabula
rasa.”

The result, AlphaGo Zero, detailed in a paper published in October, 2017, was so called because
it had zero knowledge of Go beyond the rules. This new program was much less well-known;
perhaps you can ask for the world’s attention only so many times. But in a way it was the more
remarkable achievement, one that no longer had much to do with Go at all. In fact, less than
two months later, DeepMind published a preprint of a third paper, showing that the algorithm
behind AlphaGo Zero could be generalized to any two-person, zero-sum game of perfect
information (that is, a game in which there are no hidden elements, such as face-down cards in
poker). DeepMind dropped the “Go” from the name and christened its new system AlphaZero.
At its core was an algorithm so powerful that you could give it the rules of humanity’s richest
and most studied games and, later that day, it would become the best player there has ever
been. Perhaps more surprising, this iteration of the system was also by far the simplest.

A typical chess engine is a hodgepodge of tweaks and shims made over decades of trial and
error. The best engine in the world, Stockfish, is open source, and it gets better by a kind of
Darwinian selection: someone suggests an idea; tens of thousands of games are played between
the version with the idea and the version without it; the best version wins. As a result, it is not a
particularly elegant program, and it can be hard for coders to understand. Many of the changes
programmers make to Stockfish are best formulated in terms of chess, not computer science,
and concern how to evaluate a given situation on the board: Should a knight be worth 2.1
points or 2.2? What if it’s on the third rank, and the opponent has an opposite-colored bishop?
To illustrate this point, David Silver, the head of research at DeepMind, once listed the moving
parts in Stockfish. There are more than fifty of them, each requiring a significant amount of
code, each a bit of hard-won chess arcana: the Counter Move Heuristic; databases of known
endgames; evaluation modules for Doubled Pawns, Trapped Pieces, Rooks on (Semi) Open
Files, and so on; strategies for searching the tree of possible moves, like “aspiration windows”
and “iterative deepening.”

https://www.nature.com/articles/nature24270
https://arxiv.org/abs/1712.01815
https://en.wikipedia.org/wiki/Perfect_information
https://en.wikipedia.org/wiki/Perfect_information

AlphaZero, by contrast, has only two parts: a neural network and an algorithm called Monte
Carlo Tree Search. (In a nod to the gaming mecca, mathematicians refer to approaches that
involve some randomness as “Monte Carlo methods.”) The idea behind M.C.T.S., as it’s often
known, is that a game like chess is really a tree of possibilities. If I move my rook to d8, you
could capture it or let it be, at which point I could push a pawn or move my bishop or protect
my queen. . . . The trouble is that this tree gets incredibly large incredibly quickly. No amount
of computing power would be enough to search it exhaustively. An expert human player is an
expert precisely because her mind automatically identifies the essential parts of the tree and
focusses its attention there. Computers, if they are to compete, must somehow do the same.

Chess commentators have praised AlphaZero, declaring that the engine “plays like a human
on fire.”
Photograph Courtesy DeepMind Technologies

This is where the neural network comes in. AlphaZero’s neural network receives, as input, the
layout of the board for the last few moves of the game. As output, it estimates how likely the
current player is to win and predicts which of the currently available moves are likely to work
best. The M.C.T.S. algorithm uses these predictions to decide where to focus in the tree. If the
network guesses that ‘knight-takes-bishop’ is likely to be a good move, for example, then the
M.C.T.S. will devote more of its time to exploring the consequences of that move. But it
balances this “exploitation” of promising moves with a little “exploration”: it sometimes picks
moves it thinks are unlikely to bear fruit, just in case they do.

At first, the neural network guiding this search is fairly stupid: it makes its predictions more or
less at random. As a result, the Monte Carlo Tree Search starts out doing a pretty bad job of
focussing on the important parts of the tree. But the genius of AlphaZero is in how it learns. It
takes these two half-working parts and has them hone each other. Even when a dumb neural
network does a bad job of predicting which moves will work, it’s still useful to look ahead in the
game tree: toward the end of the game, for instance, the M.C.T.S. can still learn which positions
actually lead to victory, at least some of the time. This knowledge can then be used to improve
the neural network. When a game is done, and you know the outcome, you look at what the
neural network predicted for each position (say, that there’s an 80.2 per cent chance that
castling is the best move) and compare that to what actually happened (say, that the
percentage is more like 60.5); you can then “correct” your neural network by tuning its
synaptic connections until it prefers winning moves. In essence, all of the M.C.T.S.’s searching
is distilled into new weights for the neural network.

With a slightly better network, of course, the search gets slightly less misguided—and this
allows it to search better, thereby extracting better information for training the network. On
and on it goes, in a feedback loop that ratchets up, very quickly, toward the plateau of known
ability.

When the AlphaGo Zero and AlphaZero papers were published, a small army of enthusiasts
began describing the systems in blog posts and YouTube videos and building their own copycat
versions. Most of this work was explanatory—it flowed from the amateur urge to learn and
share that gave rise to the Web in the first place. But a couple of efforts also sprung up to
replicate the work at a large scale. The DeepMind papers, after all, had merely described the
greatest Go- and chess-playing programs in the world—they hadn’t contained the source code,
and the company hadn’t made the programs themselves available to players. Having declared
victory, its engineers had departed the field.

Gian-Carlo Pascutto, a computer programmer who works at the Mozilla Corporation, had a
track record of building competitive game engines, first in chess, then in Go. He followed the
latest research. As the combination of Monte Carlo Tree Search and a neural network became
the state of the art in Go A.I.s, Pascutto built the world’s most successful open-source Go
engines—first Leela, then LeelaZero—which mirrored the advances made by DeepMind. The
trouble was that DeepMind had access to Google’s vast cloud and Pascutto didn’t. To train its
Go engine, DeepMind used five thousand of Google’s “Tensor Processing Units”—chips
specifically designed for neural-network calculations—for thirteen days. To do the same work
on his desktop system, Pascutto would have to run it for seventeen hundred years.

https://medium.com/applied-data-science/how-to-build-your-own-alphazero-ai-using-python-and-keras-7f664945c188
https://www.youtube.com/watch?v=Fbs4lnGLS8M
https://github.com/suragnair/alpha-zero-general
https://github.com/suragnair/alpha-zero-general
https://www.sjeng.org/leela.html
https://github.com/gcp/leela-zero

To compensate for his lack of computing power, Pascutto distributed the effort. LeelaZero is a
federated system: anyone who wants to participate can download the latest version, donate
whatever computing power he has to it, and upload the data he generates so that the system
can be slightly improved. The distributed LeelaZero community has had their system play
more than ten million games against itself—a little more than AlphaGo Zero. It is now one of
the strongest existing Go engines.

It wasn’t long before the idea was extended to chess. In December of last year, when the
AlphaZero preprint was published, “it was like a bomb hit the community,” Gary Linscott said.
Linscott, a computer scientist who had worked on Stockfish, used the existing LeelaZero code
base, and the new ideas in the AlphaZero paper, to create Leela Chess Zero. (For Stockfish, he
had developed a testing framework so that new ideas for the engine could be distributed to a
fleet of volunteers, and thus vetted more quickly; distributing the training for a neural network
was a natural next step.) There were kinks to sort out, and educated guesses to make about
details that the DeepMind team had left out of their papers, but within a few months the neural
network began improving. The chess world was already obsessed with AlphaZero: posts
on chess.com celebrated the engine; commentators and grandmasters pored over the handful
of AlphaZero games that DeepMind had released with their paper, declaring that this was “how
chess ought to be played,” that the engine “plays like a human on fire.” Quickly, Lc0, as Leela
Chess Zero became known, attracted hundreds of volunteers. As they contributed their
computer power and improvements to the source code, the engine got even better. Today, one
core contributor suspects that it is just a few months away from overtaking Stockfish. Not long
after, it may become better than AlphaZero itself.

When we spoke over the phone, Linscott marvelled that a project like his, which would once
have taken a talented doctoral student several years, could now be done by an interested
amateur in a couple of months. Software libraries for neural networks allow for the replication
of a world-beating design using only a few dozen lines of code; the tools already exist for
distributing computation among a set of volunteers, and chipmakers such as Nvidia have put
cheap and powerful G.P.U.s—graphics-processing chips, which are perfect for training neural
networks—into the hands of millions of ordinary computer users. An algorithm like M.C.T.S. is
simple enough to be implemented in an afternoon or two. You don’t even need to be an expert
in the game for which you’re building an engine. When he built LeelaZero, Pascutto hadn’t
played Go for about twenty years.

David Silver, the head of research at DeepMind, has pointed out a seeming paradox at the heart
of his company’s recent work with games: the simpler its programs got—from AlphaGo to
AlphaGo Zero to AlphaZero—the better they performed. “Maybe one of the principles that
we’re after,” he said, in a talk in December of 2017, “is this idea that by doing less, by removing
complexity from the algorithm, it enables us to become more general.” By removing the Go
knowledge from their Go engine, they made a better Go engine—and, at the same time, an
engine that could play shogi and chess.

It was never obvious that things would turn out this way. In 1953, Alan Turing, who helped
create modern computing, wrote a short paper titled, “Digital Computers Applied to Games.”
In it, he developed a chess program “based on an introspective analysis of my thought
processes while playing.” The program was simple, but in its case simplicity was no virtue: like
Turing, who wasn’t a gifted chess player, it missed much of the depth of the game and didn't
play very well. Even so, Turing conjectured that the idea that “one cannot programme a
machine to play a better game than one plays oneself” was a “rather glib view.” Although it

https://www.newyorker.com/science/elements/the-persuasive-power-of-the-wolf-lady
https://www.newyorker.com/science/elements/the-persuasive-power-of-the-wolf-lady
https://github.com/LeelaChessZero/lczero
https://www.chess.com/survey/is-google-s-alphazero-the-best-chess-player-on-the-planet
https://www.chess.com/survey/is-google-s-alphazero-the-best-chess-player-on-the-planet
https://www.youtube.com/watch?v=lFXJWPhDsSY

sounds right to say that “no animal can swallow an animal heavier than itself,” plenty of
animals can. Similarly, Turing suggested, there might be no contradiction in a bad chess player
making a chess program that plays brilliantly. One tantalizing way to do it would be to have the
program learn for itself.

The success of AlphaZero seems to bear this out. It has a simple structure, but it’s capable of
learning surprisingly deep features of the games it plays. In one section of the AlphaGo Zero
paper, the DeepMind team illustrates how their A.I., after a certain number of training cycles,
discovers strategies well-known to master players, only to discard them just a few cycles later.
It is odd and a little unsettling to see humanity’s best ideas trundled over on the way to
something better; it hits close to home in a way that seeing a physical machine exceed us—a
bulldozer shifting a load of earth, say—doesn’t. In a recent editorial in Science, Garry Kasparov,
the former chess champion who lost to I.B.M.’s Deep Blue in 1997, argues that AlphaZero
doesn’t play chess in a way that reflects the presumably systematic “priorities and prejudices of
programmers”; instead—even though it searches far fewer positions per move than a
traditional engine—it plays in an open, aggressive style and seems to think in terms of strategy
rather than tactics, like a human with uncanny vision. “Because AlphaZero programs itself,”
Kasparov writes, “I would say that its style reflects the truth.”

Playing chess like a human, of course, isn't the same thing as thinking about chess like a
human, or learning like one. There is an old saying that game-playing is the Drosophila of A.I.:
as the fruit fly is to biologists, so games like Go and chess are to computer scientists studying
the mechanisms of intelligence. It’s an evocative analogy. And yet it could be that the task of
playing chess, once it’s converted into the task of searching tens of thousands of nodes per
second in a game tree, exercises a different kind of intelligence than the one we care about
most. Played in this way, chess might be more like earth-moving than we thought: an activity
that, in the end, isn’t our forté, and so shouldn’t be all that dear to our souls. To learn,
AlphaZero needs to play millions more games than a human does— but, when it’s done, it plays
like a genius. It relies on churning faster than a person ever could through a deep search tree,
then uses a neural network to process what it finds into something that resembles intuition.
Surely the program teaches us something new about intelligence. But its success also
underscores just how much the world’s best human players can see by means of a very different
process—one based on reading, talking, and feeling, in addition to playing. What may be most
surprising is that we humans have done as well as we have in games that seem, now, to have
been made for machines.

James Somers is a writer and a programmer based in New York.

