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In 2016, a Google program soundly defeated Lee Sedol, the world’s best Go player, in a 
match viewed by more than a hundred million people. 
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Afew weeks ago, a group of researchers from Google’s artificial-intelligence subsidiary, 
DeepMind, published a paper in the journal Science that described an A.I. for playing games. 
While their system is general-purpose enough to work for many two-person games, the 
researchers had adapted it specifically for Go, chess, and shogi (“Japanese chess”); it was given 
no knowledge beyond the rules of each game. At first it made random moves. Then it started 
learning through self-play. Over the course of nine hours, the chess version of the program 
played forty-four million games against itself on a massive cluster of specialized Google 
hardware. After two hours, it began performing better than human players; after four, it was 
beating the best chess engine in the world. 

The program, called AlphaZero, descends from AlphaGo, an A.I. that became known for 
defeating Lee Sedol, the world’s best Go player, in March of 2016. Sedol’s defeat was a stunning 
upset. In “AlphaGo,” a documentary released earlier this year on Netflix, the filmmakers follow 
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both the team that developed the A.I. and its human opponents, who have devoted their lives 
to the game. We watch as these humans experience the stages of a new kind of grief. At first, 
they don’t see how they can lose to a machine: “I believe that human intuition is still too 
advanced for A.I. to have caught up,” Sedol says, the day before his five-game match with 
AlphaGo. Then, when the machine starts winning, a kind of panic sets in. In one particularly 
poignant moment, Sedol, under pressure after having lost his first game, gets up from the table 
and, leaving his clock running, walks outside for a cigarette. He looks out over the rooftops of 
Seoul. (On the Internet, more than fifty million people were watching the match.) Meanwhile, 
the A.I., unaware that its opponent has gone anywhere, plays a move that commentators called 
creative, surprising, and beautiful. In the end, Sedol lost, 1-4. Before there could be acceptance, 
there was depression. “I want to apologize for being so powerless,” he said in a press 
conference. Eventually, Sedol, along with the rest of the Go community, came to appreciate the 
machine. “I think this will bring a new paradigm to Go,” he said. Fan Hui, the European 
champion, agreed. “Maybe it can show humans something we’ve never discovered. Maybe it’s 
beautiful.” 

AlphaGo was a triumph for its creators, but still unsatisfying, because it depended so much on 
human Go expertise. The A.I. learned which moves it should make, in part, by trying to mimic 
world-class players. It also used a set of hand-coded heuristics to avoid the worst blunders 
when looking ahead in games. To the researchers building AlphaGo, this knowledge felt like a 
crutch. They set out to build a new version of the A.I. that learned on its own, as a “tabula 
rasa.” 

The result, AlphaGo Zero, detailed in a paper published in October, 2017, was so called because 
it had zero knowledge of Go beyond the rules. This new program was much less well-known; 
perhaps you can ask for the world’s attention only so many times. But in a way it was the more 
remarkable achievement, one that no longer had much to do with Go at all. In fact, less than 
two months later, DeepMind published a preprint of a third paper, showing that the algorithm 
behind AlphaGo Zero could be generalized to any two-person, zero-sum game of perfect 
information (that is, a game in which there are no hidden elements, such as face-down cards in 
poker). DeepMind dropped the “Go” from the name and christened its new system AlphaZero. 
At its core was an algorithm so powerful that you could give it the rules of humanity’s richest 
and most studied games and, later that day, it would become the best player there has ever 
been. Perhaps more surprising, this iteration of the system was also by far the simplest. 

A typical chess engine is a hodgepodge of tweaks and shims made over decades of trial and 
error. The best engine in the world, Stockfish, is open source, and it gets better by a kind of 
Darwinian selection: someone suggests an idea; tens of thousands of games are played between 
the version with the idea and the version without it; the best version wins. As a result, it is not a 
particularly elegant program, and it can be hard for coders to understand. Many of the changes 
programmers make to Stockfish are best formulated in terms of chess, not computer science, 
and concern how to evaluate a given situation on the board: Should a knight be worth 2.1 
points or 2.2? What if it’s on the third rank, and the opponent has an opposite-colored bishop? 
To illustrate this point, David Silver, the head of research at DeepMind, once listed the moving 
parts in Stockfish. There are more than fifty of them, each requiring a significant amount of 
code, each a bit of hard-won chess arcana: the Counter Move Heuristic; databases of known 
endgames; evaluation modules for Doubled Pawns, Trapped Pieces, Rooks on (Semi) Open 
Files, and so on; strategies for searching the tree of possible moves, like “aspiration windows” 
and “iterative deepening.” 
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AlphaZero, by contrast, has only two parts: a neural network and an algorithm called Monte 
Carlo Tree Search. (In a nod to the gaming mecca, mathematicians refer to approaches that 
involve some randomness as “Monte Carlo methods.”) The idea behind M.C.T.S., as it’s often 
known, is that a game like chess is really a tree of possibilities. If I move my rook to d8, you 
could capture it or let it be, at which point I could push a pawn or move my bishop or protect 
my queen. . . . The trouble is that this tree gets incredibly large incredibly quickly. No amount 
of computing power would be enough to search it exhaustively. An expert human player is an 
expert precisely because her mind automatically identifies the essential parts of the tree and 
focusses its attention there. Computers, if they are to compete, must somehow do the same. 

 



Chess commentators have praised AlphaZero, declaring that the engine “plays like a human 
on fire.” 
Photograph Courtesy DeepMind Technologies 

This is where the neural network comes in. AlphaZero’s neural network receives, as input, the 
layout of the board for the last few moves of the game. As output, it estimates how likely the 
current player is to win and predicts which of the currently available moves are likely to work 
best. The M.C.T.S. algorithm uses these predictions to decide where to focus in the tree. If the 
network guesses that ‘knight-takes-bishop’ is likely to be a good move, for example, then the 
M.C.T.S. will devote more of its time to exploring the consequences of that move. But it 
balances this “exploitation” of promising moves with a little “exploration”: it sometimes picks 
moves it thinks are unlikely to bear fruit, just in case they do. 

At first, the neural network guiding this search is fairly stupid: it makes its predictions more or 
less at random. As a result, the Monte Carlo Tree Search starts out doing a pretty bad job of 
focussing on the important parts of the tree. But the genius of AlphaZero is in how it learns. It 
takes these two half-working parts and has them hone each other. Even when a dumb neural 
network does a bad job of predicting which moves will work, it’s still useful to look ahead in the 
game tree: toward the end of the game, for instance, the M.C.T.S. can still learn which positions 
actually lead to victory, at least some of the time. This knowledge can then be used to improve 
the neural network. When a game is done, and you know the outcome, you look at what the 
neural network predicted for each position (say, that there’s an 80.2 per cent chance that 
castling is the best move) and compare that to what actually happened (say, that the 
percentage is more like 60.5); you can then “correct” your neural network by tuning its 
synaptic connections until it prefers winning moves. In essence, all of the M.C.T.S.’s searching 
is distilled into new weights for the neural network. 

With a slightly better network, of course, the search gets slightly less misguided—and this 
allows it to search better, thereby extracting better information for training the network. On 
and on it goes, in a feedback loop that ratchets up, very quickly, toward the plateau of known 
ability. 

When the AlphaGo Zero and AlphaZero papers were published, a small army of enthusiasts 
began describing the systems in blog posts and YouTube videos and building their own copycat 
versions. Most of this work was explanatory—it flowed from the amateur urge to learn and 
share that gave rise to the Web in the first place. But a couple of efforts also sprung up to 
replicate the work at a large scale. The DeepMind papers, after all, had merely described the 
greatest Go- and chess-playing programs in the world—they hadn’t contained the source code, 
and the company hadn’t made the programs themselves available to players. Having declared 
victory, its engineers had departed the field. 

Gian-Carlo Pascutto, a computer programmer who works at the Mozilla Corporation, had a 
track record of building competitive game engines, first in chess, then in Go. He followed the 
latest research. As the combination of Monte Carlo Tree Search and a neural network became 
the state of the art in Go A.I.s, Pascutto built the world’s most successful open-source Go 
engines—first Leela, then LeelaZero—which mirrored the advances made by DeepMind. The 
trouble was that DeepMind had access to Google’s vast cloud and Pascutto didn’t. To train its 
Go engine, DeepMind used five thousand of Google’s “Tensor Processing Units”—chips 
specifically designed for neural-network calculations—for thirteen days. To do the same work 
on his desktop system, Pascutto would have to run it for seventeen hundred years. 
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To compensate for his lack of computing power, Pascutto distributed the effort. LeelaZero is a 
federated system: anyone who wants to participate can download the latest version, donate 
whatever computing power he has to it, and upload the data he generates so that the system 
can be slightly improved. The distributed LeelaZero community has had their system play 
more than ten million games against itself—a little more than AlphaGo Zero. It is now one of 
the strongest existing Go engines. 

It wasn’t long before the idea was extended to chess. In December of last year, when the 
AlphaZero preprint was published, “it was like a bomb hit the community,” Gary Linscott said. 
Linscott, a computer scientist who had worked on Stockfish, used the existing LeelaZero code 
base, and the new ideas in the AlphaZero paper, to create Leela Chess Zero. (For Stockfish, he 
had developed a testing framework so that new ideas for the engine could be distributed to a 
fleet of volunteers, and thus vetted more quickly; distributing the training for a neural network 
was a natural next step.) There were kinks to sort out, and educated guesses to make about 
details that the DeepMind team had left out of their papers, but within a few months the neural 
network began improving. The chess world was already obsessed with AlphaZero: posts 
on chess.com celebrated the engine; commentators and grandmasters pored over the handful 
of AlphaZero games that DeepMind had released with their paper, declaring that this was “how 
chess ought to be played,” that the engine “plays like a human on fire.” Quickly, Lc0, as Leela 
Chess Zero became known, attracted hundreds of volunteers. As they contributed their 
computer power and improvements to the source code, the engine got even better. Today, one 
core contributor suspects that it is just a few months away from overtaking Stockfish. Not long 
after, it may become better than AlphaZero itself. 

When we spoke over the phone, Linscott marvelled that a project like his, which would once 
have taken a talented doctoral student several years, could now be done by an interested 
amateur in a couple of months. Software libraries for neural networks allow for the replication 
of a world-beating design using only a few dozen lines of code; the tools already exist for 
distributing computation among a set of volunteers, and chipmakers such as Nvidia have put 
cheap and powerful G.P.U.s—graphics-processing chips, which are perfect for training neural 
networks—into the hands of millions of ordinary computer users. An algorithm like M.C.T.S. is 
simple enough to be implemented in an afternoon or two. You don’t even need to be an expert 
in the game for which you’re building an engine. When he built LeelaZero, Pascutto hadn’t 
played Go for about twenty years. 

David Silver, the head of research at DeepMind, has pointed out a seeming paradox at the heart 
of his company’s recent work with games: the simpler its programs got—from AlphaGo to 
AlphaGo Zero to AlphaZero—the better they performed. “Maybe one of the principles that 
we’re after,” he said, in a talk in December of 2017, “is this idea that by doing less, by removing 
complexity from the algorithm, it enables us to become more general.” By removing the Go 
knowledge from their Go engine, they made a better Go engine—and, at the same time, an 
engine that could play shogi and chess. 

It was never obvious that things would turn out this way. In 1953, Alan Turing, who helped 
create modern computing, wrote a short paper titled, “Digital Computers Applied to Games.” 
In it, he developed a chess program “based on an introspective analysis of my thought 
processes while playing.” The program was simple, but in its case simplicity was no virtue: like 
Turing, who wasn’t a gifted chess player, it missed much of the depth of the game and didn't 
play very well. Even so, Turing conjectured that the idea that “one cannot programme a 
machine to play a better game than one plays oneself” was a “rather glib view.” Although it 
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sounds right to say that “no animal can swallow an animal heavier than itself,” plenty of 
animals can. Similarly, Turing suggested, there might be no contradiction in a bad chess player 
making a chess program that plays brilliantly. One tantalizing way to do it would be to have the 
program learn for itself. 

The success of AlphaZero seems to bear this out. It has a simple structure, but it’s capable of 
learning surprisingly deep features of the games it plays. In one section of the AlphaGo Zero 
paper, the DeepMind team illustrates how their A.I., after a certain number of training cycles, 
discovers strategies well-known to master players, only to discard them just a few cycles later. 
It is odd and a little unsettling to see humanity’s best ideas trundled over on the way to 
something better; it hits close to home in a way that seeing a physical machine exceed us—a 
bulldozer shifting a load of earth, say—doesn’t. In a recent editorial in Science, Garry Kasparov, 
the former chess champion who lost to I.B.M.’s Deep Blue in 1997, argues that AlphaZero 
doesn’t play chess in a way that reflects the presumably systematic “priorities and prejudices of 
programmers”; instead—even though it searches far fewer positions per move than a 
traditional engine—it plays in an open, aggressive style and seems to think in terms of strategy 
rather than tactics, like a human with uncanny vision. “Because AlphaZero programs itself,” 
Kasparov writes, “I would say that its style reflects the truth.” 

Playing chess like a human, of course, isn't the same thing as thinking about chess like a 
human, or learning like one. There is an old saying that game-playing is the Drosophila of A.I.: 
as the fruit fly is to biologists, so games like Go and chess are to computer scientists studying 
the mechanisms of intelligence. It’s an evocative analogy. And yet it could be that the task of 
playing chess, once it’s converted into the task of searching tens of thousands of nodes per 
second in a game tree, exercises a different kind of intelligence than the one we care about 
most. Played in this way, chess might be more like earth-moving than we thought: an activity 
that, in the end, isn’t our forté, and so shouldn’t be all that dear to our souls. To learn, 
AlphaZero needs to play millions more games than a human does— but, when it’s done, it plays 
like a genius. It relies on churning faster than a person ever could through a deep search tree, 
then uses a neural network to process what it finds into something that resembles intuition. 
Surely the program teaches us something new about intelligence. But its success also 
underscores just how much the world’s best human players can see by means of a very different 
process—one based on reading, talking, and feeling, in addition to playing. What may be most 
surprising is that we humans have done as well as we have in games that seem, now, to have 
been made for machines. 

James Somers is a writer and a programmer based in New York. 

 


